OMNI ATAC-seg Updated 18 Dec 2018

<u>Improved - Assay for Transposase-Accessible Chromatin with high-throughput sequencing</u> (OMNI-ATAC-seq)

This protocol mainly uses either the Illumina Nextera kit or the Vazyme Trueprep kit to prepare ATAC-seq libraries for the Illumina platform. Please look at the manufacturer's instructions and product information for more details.

The Omni-ATAC protocol is an improved protocol of the original ATAC-seq^{1,2} protocol. The following adjustment on the lysis buffer and tagmentation buffer increase the signal to noise ratio significantly and reduced mitochondrial reads by ~20%.

Typically, the protocol yields best results with 50,000-100,000 cells but the protocol can be scale to work with different numbers of cell by optimizing the cell: transposons ratio.

Cells can be freshly harvested or snap-frozen cells³. For tissues, isolation of nuclei, please refer to Corces *et al.*, 2017 for more details.

Notes:

- ❖ Make sure the cells are viable prior to tagmentation. A viability above 90% is recommended and preferably around 95%. If too many dead cells are present, they should be removed before lysis to avoid affecting the results³.
- ❖ The use of LoBind tube is recommended.
- Some steps may need to be optimized depending on cell type

The following kit is required:

- i) Illumina FC-121-1030 Nextera DNA Library Prep Kit (24 samples) @ Vazyme TD501TruePrep DNA Library Prep Kit V2 for Illumina®
- ii) Illumina FC-121-101 Nextera Index Kit (24 indexes, 96 samples) @ Vazyme TD202/3 TruePrep Index Kit V2/V3 for Illumina (96reactions/384reactions)
- iii) QIAGEN MinElute PCR purification kit (QIAGEN, cat# 28004)
- iv) AMPure XP beads (Beckman, cat# A63881)
- v) KAPA HiFi HotStart ReadyMix (ROCHE, cat# KK2601)
- vi) KAPA Library Quantification Kit (ROCHE, cat# KK4854)
- vii) Fragment Analyzer kit DNF-474-0500
- viii) Qubit™ dsDNA HS (ThermoFisher, cat# Q32854)

I. Preparation of buffer:

1) Prepare the ATAC-Resuspension buffer (RSB) and keep it on ice for later use (~1.1ml per sample).

ATAC-Resuspension buffer (RSB)			
Reagent	Final concentration	2ml	
1M Tris HCl (pH 7.4)	10mM	20μΙ	
5M NaCl	10mM	4μΙ	
1M MgCl ₂	3mM	6μΙ	
25X ROCHE Complete Protease Inhibitor Cocktail	1X	80µl	
ddH ₂ O		1890µl	

II. Cell lysis

- 2) Spin down 50,000 viable cells (>90%) at 500 x g at 4° C for 5 minutes.
- 3) Remove all supernatant carefully without disturbing the cells.

OMNI ATAC-seq Updated 18 Dec 2018

4) Add 50 µl of cold ATAC-RSB with detergent to the cell pellet and pipette gently to mix.

ATAC-RSB with detergent			
Reagent	Final concentration	100μΙ	
ATAC-RSB		97.8	
10% Igepal CA-630	0.1%	1μΙ	
10% Tween-20	0.1%	1μΙ	
5% Digitonin (Invitrogen™ BN2006)	0.01%	0.2μΙ	

- 5) Incubate the cells on ice for 3 minutes.
- 6) Dilute out the detergent by adding 1 ml of cold ATAC-RSB containing 0.1% Tween-20 only.

ATAC-RSB with 0.1% Tween-20		
Reagent	Final concentration	1ml
ATAC-RSB		990µl
10% Tween-20	0.1%	10μΙ

7) Spin down the nuclei at 500 x g at 4°C for 10 minutes.

III. Tagmentation

8) Carefully remove the supernatant and resuspend the nuclei in the transposase mix as follow:

2x TD Buffer			
Reagent	Final Concentration	100ml	
1M Tris-HCl pH 7.6	20 mM	2ml	
1M MgCl2	10 mM	1ml	
Dimethyl Formamide	20%	20ml	
ddH₂O		77ml	

Transposase mix		
Reagent	50μΙ	
PBS	16.9µl	
2x TD Buffer	25μΙ	
Tn5	2.5μl*	
5% digitonin	0.1μΙ	
10% Tween-20	0.5μΙ	
ddH₂O	5μΙ	

^{*}For homemade Tn5, experimental optimization is necessary as there is batch to batch difference in enzymatic efficiency.

9) Incubate the tubes at 37°C for 30 minutes in either a thermocycler or Thermomixer(1000rpm).

IV. DNA Purification – Post tagmentation

- 10) Purify DNA immediately using MinElute kit.
- 11) Add 100 µl of PB buffer to the tube and mix well.
- 12) Transfer the mixture to the column and wash with 750 µl PE buffer.
- 13) Elute the DNA using 20 µl of EB.

The chromatin/DNA is now tagmented. If amplification of the tagmented fragments is not performed immediately, store DNA in -20°C.

OMNI ATAC-seg Updated 18 Dec 2018

V. Library amplification

14) Amplify the tagmented fragments with indexed primers with the following PCR mix and cycles

PCR Mix		
Reagent	Volume (μL)	
2X KAPA HiFi Hotstart Readymix	25	
Primer 1 (N7XX)	2.5	
Primer 2 (N5XX)	2.5	
Sample	20	
TOTAL	50	

Thermocycler conditions			
Stage 1	72	05:00	
Stage 2	98	00:30	
	98	00:10	
Stage 3	63	00:30	5 cycles
	72	01:00	
Stage 4	4	∞	

- 15) Transfer 1 μ l of amplified product to a new tube and store the remained at 4°C. (Proceed immediately to quantify the concentration of the amplified product.)
- 16) Dilute the aliquoted 1 μ l into 1:1,000 and perform a library quantification with KAPA library quantification kit.
- 17) Calculate additional cycles needed to achieve 10 nM taking the dilution factor into consideration.
- 18) Run the rest of the stored product for additional cycles.

Thermocycler conditions			
Stage 1	98	00:30	
	98	00:10	*Calculated
Stage 2	63	00:30	# of
	72	01:00	cycles
Stage 3	4	∞	

^{*}Determined by the library quantification qPCR in step 18.

VI. DNA Purification – Post Amplification

- 19) Purify amplified DNA fragments using MinElute kit.
- 20) Add 250 µl of PB buffer to the tube and mix well.
- 21) Transfer the mixture to the column and wash with 750µl PE buffer.
- 22) Elute the DNA using 20 µl of EB.

VII. Size selection

- 23) Check the library size using Fragment Analyzer, AATI or Bioanalyzer, Agilent.
- 24) Take 10 μ l of the samples and perform a size selection using the AMPure XP beads to select for fragments of 150bp to 800bp (0.55X and then 1.5X, this should be optimized based on initial library size).
- 25) Remove AMPure XP beads from 4°C and equilibrate to room temperature
- 26) Adjust the sample volume by adding 190μl of ddH₂O or 10 mM Tris-Cl(pH8.0) to 200μl.

OMNI ATAC-seq Updated 18 Dec 2018

- 27) Add 110µl (0.55X) of beads to the tube and mix properly
- 28) Incubate for 5 minutes and place the tube on a magnetic stand for 2 minutes or until the mixture becomes clear.
- 29) Transfer the supernatant to a fresh tube and add 190µl (1.5X) of beads to the supernatant.
- 30) Mix properly and incubate for 5 minutes.
- 31) Place the tube on a magnetic rack for 2 minutes or until the mixture becomes clear.
- 32) Wash the beads twice with 70% EtOH for 30 seconds without disturbing the beads on the magnetic rack.
- 33) Remove all the residual ethanol and air-dry the pellet for 2-5 minutes.
- 34) Elute the DNA using 20 μ l of ddH₂O or 10 mM Tris-HCl, pH8.0. Over dried pellet will result in poor resuspension and elution.

VIII. Library quality check, quantification and sequencing

- 35) Quantify the samples and run the library on a Fragment Analyzer, AATI or Bioanalyzer, Agilent to check the size distribution.
- 36) Quantify the final library with library quantification kit.
- 37) Dilute and pool multiple libraries if required to desired concentration base on the sequencing platform requirement.
- 38) Run the sequencing.

References:

- Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 10: 1213-1218
- Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current protocols in molecular biology / edited by Frederick M Ausubel [et al] 109: 21.29.21-21.29.29
- 3. Corces MR, Trevino AE, Hamilton EG, et al. (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature methods 14: 959
- 4. Milani P, Escalante-Chong R, Shelley BC, et al. (2016) Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells. Scientific Reports 6: 25474
- 5. Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH (2016) Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Molecular Metabolism 5: 233-244