RNA-seq

This protocol uses the Vazyme Ribo-off rRNA Depletion kit and the QIAseq[™] Stranded Total RNA Library Kit to prepare RNA-seq libraries for the Illumina platform. Please look at the manufacturer's instructions and product information for more details.

The following kits are required:

- i) Vazyme Ribo-off rRNA Depletion Kit (Human/Mouse/Rat) (Vazyme, cat# N406)
- ii) VAHTS RNA Clean Beads (Vazyme, cat# N412)
- iii) QIAseq[™] Stranded Total RNA Library Kit (QIAGEN, cat# 180743)
- iv) KAPA Library Quantification Kit (ROCHE, cat# KK4854)
- v) Fragment Analyzer kit DNF-474-0500
- vi) Qubit[™] dsDNA HS (ThermoFisher, cat# Q32854)

I. Preparation of total RNA sample

- 1) Extract RNA using a TRIzol protocol or a kit like QIAGEN RNeasy Kits
- 2) Dilute 1 µg of total RNA with 11 µl of Nuclease-free Water in a Nuclease-free PCR tube and keep on ice.

Vazyme Ribo-off rRNA Depletion Kit

II. rRNA/Probe hybridization

1) Prepare the following reaction solution in a Nuclease-free PCR tube:

Hybridization Mix		
Reagent Volume		
rRNA Probe (H/M/R)	1	
Probe Buffer	3	
Total RNA	11	
TOTAL	15	

- 2) Mix by gently pipetting up and down for 10 times.
- 3) Collect the liquid to the bottom of the tube by a brief centrifugation.
- 4) Put the sample into a PCR instrument and run the following program (Hot Lid Temperature: 105°C):

Thermocycler Conditions			
	95	02:00	
Stage 1	95-22C	0.1C /sec	1 cycle
	22C	05:00	
	4	∞	

III. Digestion with RNase H

1) Prepare the following reaction solution on ice:

RNase H Digestion Mix		
Reagent Volume (µL		
RNase H Buffer	4	
RNase H	1	
Hybridized RNA	15	
TOTAL	20	

2) Mix by gently pipetting up and down for 10 times.

3) Put the sample into a PCR instrument and run the following program (Hot Lid Temperature: 105°C):

Thermocycler Conditions			
Stage 1	37	30:00	1 cycle
	4	8	

IV. Digestion with DNase I

1) Prepare the following reaction solution on ice:

DNase I Digestion Mix		
Reagent Volume (µL)		
DNase I Buffer	29	
DNase I	1	
RNase H Digested Products	20	
TOTAL	50	

- 2) Mix by gently pipetting up and down for 10 times.
- 3) Put the sample into a PCR instrument and run the following program (Hot Lid Temperature: 105°C):

Thermocycler Conditions			
Stage 1	37	30:00	1 cycle
	4	8	

- 4) Collect the liquid to the bottom of the tube by a brief centrifugation.
- 5) Put the tube on ice and immediately proceed to the next procedure.

V. Purification of Ribosomal-depleted RNA with VAHTS RNA Clean Beads

- 1) Suspend the VAHTS RNA Clean Beads thoroughly by vortexing
- 2) Pipet 110 µl (2.2X) of beads into the RNA sample and mix thoroughly by pipetting up and down for 10 times.
- 3) Incubate the sample on ice for 15 min to make the RNA bind to the beads.
- 4) Put the sample onto a magnetic stand until the solution clarifies.
- 5) Carefully discard the supernatant without disturbing the beads.
- 6) Keep the sample on the magnetic stand, add 200 μl of freshly prepared 80% ethanol to rinse the beads.a. DO NOT re-suspend the beads!
- 7) Incubate at room temperature for 30 sec
- 8) Carefully discard the supernatant without disturbing the beads.
- a. Note: It is highly recommended to use a 10 µl pipette to remove the residual supernatant in this step.
- 9) Repeat the wash step
- 10) Keep the sample on the magnetic stand, open the tube and air-dry the beads for 5 min-10 min.
- 11) Take the sample out of magnetic stand
- 12) Add 30 μl of Nuclease-free Water and mix thoroughly by pipetting for 6 times.
- 13) Incubate at room temperature without shaking for 2 min.
- 14) Put the tube back on the magnetic stand and wait until the solution clarifies
- 15) Transfer 29 μ l of the supernatant to a new Nuclease-free PCR tube without disturbing the beads.
- 16) Use Qubit RNA HS to quantify RNA
- 17) The eluted Ribosomal-depleted RNA is now ready for reverse transcription or RNA library preparation. It is highly recommended to proceed to the next procedures immediately, rather than to store the RNA at -20°C.

QIAseq[™] Stranded Total RNA Library Kit

VI. RNA fragmentation

- 1) Place 29 μ L of rRNA-depleted RNA into a PCR tube
 - a. RNA should be depleted of riboRNA using the Vazyme kit
 - b. Ribo-depleted RNA should have quantified with Qubit RNA HS and total amount of RNA calculated (necessary for adaptor addition)
- 2) Add 8 μl 5x RT Buffer to each sample
- 3) Incubate in a PCR machine as described:

Thermocycler Conditions for 150–250 bp Fragmentation				
	RNA Quality			
	(use one based on score)			
	RIN > 9	95C	15:00	
Stage 1	RIN 5-6	95C	10:00	1 cycle
	RIN <3	None	None	
Stage 2		4	8	1 cycle

VII. Reverse Transcription

- 1) Make 0.4M DTT by diluting 1 μL of 1M DTT with 1.5 μl with RNase-free water. a. Discard after 48 hrs
- 2) Add first strand synthesis reagents to each tube as follows:

1 st Strand Synthesis Mix		
Reagent	Volume (µL)	
RNase Inhibitor	1	
0.4M DTT	1	
RT Enzyme	1	
fragmented RNA	37	
TOTAL	40	

- 3) Pipette to mix and spin down briefly.
- 4) Incubate in a thermocycler programmed as outlined below:

	Thermocycler Conditions			
	25	10:00		
Stage 1	42	15:00	1 cycle	
	70	15:00		
	4	∞		

5) Clean up reverse transcription samples using QIAseq beads

VIII. Reverse Transcription Cleanup

- 1) Equilibrate QIAseq beads to room temperature (30min)
- In the same plate/tube(s), perform a 1.4X bead based cleanup by adding 56 μL QIAseq beads to your 40 μL reaction (total vol = 96 μL)
- 3) Mix thoroughly by vortexing and/or pipetting up and down multiple times.
- 4) Incubate the plate/tube(s) at room temperature for 5 min to bind DNA to the beads.
- 5) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 6) Carefully remove and discard the supernatant.
- 7) Keeping the plate/tube(s) on the magnet, add 200 μ L of 80% ethanol.
- 8) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 9) Carefully remove and discard the ethanol.
- 10) Keeping the plate/tube(s) on the magnet, add 200 μL of 80% ethanol.
- 11) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 12) Carefully remove and discard the ethanol. Try to remove all residual ethanol without disturbing the beads.
- 13) Dry the beads at room temperature for 3-5 min, or until all of the ethanol has evaporated. Do not over-dry.
- 14) Remove the plate/tube(s) from the magnet.
- 15) Thoroughly resuspend the beads in 40 μL of elution buffer or 10 mM Tris-HCl, pH 8.0 or H2O
- 16) Incubate the plate/tube(s) at room temperature for 5 min to elute DNA off the beads.
- 17) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 18) Transfer 38.5 μL of the clear supernatant to a new plate/tube(s)
- 19) Proceed to second strand synthesis or store samples in -20C

IX. Second strand synthesis / end-repair / A-addition

1) Assemble each second strand synthesis reaction to each tube as follows:

2 nd Strand Synthesis Mix		
Reagent Volume (µL)		
Second Strand Buffer	5	
Second Strand Enzyme Mix	6.5	
cDNA	38.5	
TOTAL	50	

2) Mix thoroughly and centrifuge briefly.

3) Incubate in a thermocycler programmed as outlined below:

Thermocycler Conditions			
	25	30:00	
Stage 1	65	15:00	1 cycle
	4	∞	

4) Clean up second strand synthesis reactions using QIAseq beads

X. Second Strand Synthesis Cleanup

- In the same plate/tube(s), perform a 1.4X bead based cleanup by adding 70 μL QIAseq beads to your 50 μL reaction (total vol = 120 μL)
- 2) Mix thoroughly by vortexing and/or pipetting up and down multiple times.
- 3) Incubate the plate/tube(s) at room temperature for 5 min to bind DNA to the beads.
- 4) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 5) Carefully remove and discard the supernatant.
- 6) Keeping the plate/tube(s) on the magnet, add 200 μL of 80% ethanol.
- 7) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 8) Carefully remove and discard the ethanol.
- 9) Keeping the plate/tube(s) on the magnet, add 200 µL of 80% ethanol.
- 10) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 11) Carefully remove and discard the ethanol. Try to remove all residual ethanol without disturbing the beads.
- 12) Dry the beads at room temperature for 3-5 min, or until all of the ethanol has evaporated. Do not over-dry.
- 13) Remove the plate/tube(s) from the magnet.
- 14) Thoroughly resuspend the beads in 52 μ L of elution buffer or 10 mM Tris-HCl, pH 8.0 or H2O
- 15) Incubate the plate/tube(s) at room temperature for 5 min to elute DNA off the beads.
- 16) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 17) Transfer 50 μ L of the clear supernatant to a new plate/tube(s)
- 18) Proceed to adaptor ligation or freeze overnight at -20C

XI. Strand-Specific Adaptor Ligation

- 1) Thaw and keep Ligation Initiator at room temperature until the ligation mix is prepared.
- 2) Vortex briefly and centrifuge the adapter plate.
- 3) Remove the protective lid on the adapter plate, pierce the foil seal and dilute the QIAseq Adapters as described below:

Adaptor Dilution for total RNA input		
RNA starting amt (ng)	Adaptor Dilution	
100	1:100	
500	1:25	
1000	1:12.5	
5000	1:5	

Adaptor Dilution for ribo-depleted RNA input					
RNA starting amt (ng) Adaptor Dilution					
1	1:100				
10	1:25				
50	1:5				
100	1:2.5				

- 4) For each sample, add 2 μ l of diluted adapter.
 - a. Important: To avoid cross-contamination, do not reuse diluted adapters.

- 5) Assemble each ligation reaction as follows on ice:
 - a. Note: Mix reaction slowly and thoroughly, the reagents are very viscous

Ligation Mix						
Reagent	Volume (µL)					
Pre-mixed sample	50					
Ultralow Input Ligation Buffer, 4X	25					
Ultralow Input Ligase	5					
Ligation Initiator	6.5					
H2O	11.5					
TOTAL	23					

- 6) Incubate at 25°C for 10 min.
 - a. Important: Do not use a heated lid.
- 7) Clean up ligation reactions using QIAseq beads

XII. Adaptor Ligation Cleanup 1

- 1) In the same plate/tube(s), perform a 0.8X bead based cleanup by adding 80 μL QIAseq beads to your 100 μL ligation reaction (total vol = 180 μL)
- 2) Mix thoroughly by vortexing and/or pipetting up and down multiple times.
- 3) Incubate the plate/tube(s) at room temperature for 5 min to bind DNA to the beads.
- 4) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 5) Carefully remove and discard the supernatant.
- 6) Keeping the plate/tube(s) on the magnet, add 200 μ L of 80% ethanol.
- 7) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 8) Carefully remove and discard the ethanol.
- 9) Keeping the plate/tube(s) on the magnet, add 200 µL of 80% ethanol.
- 10) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 11) Carefully remove and discard the ethanol. Try to remove all residual ethanol without disturbing the beads.
- 12) Dry the beads at room temperature for 3-5 min, or until all of the ethanol has evaporated. Do not over-dry.
- 13) Remove the plate/tube(s) from the magnet.
- 14) Thoroughly resuspend the beads in 92 μ L of elution buffer or 10 mM Tris-HCl, pH 8.0 or H2O
- 15) Incubate the plate/tube(s) at room temperature for 5 min to elute DNA off the beads.
- 16) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 17) Transfer 90 μ L of the clear supernatant to a new plate/tube(s) for the 2nd bead clean up

XIII. Adaptor Ligation Cleanup 2

- 18) In the same plate/tube(s), perform a 1.2X bead based cleanup by adding 108 μL QIAseq beads to your 90 μL sample (total vol = 198 μL)
- 19) Mix thoroughly by vortexing and/or pipetting up and down multiple times.
- 20) Incubate the plate/tube(s) at room temperature for 5 min to bind DNA to the beads.
- 21) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 22) Carefully remove and discard the supernatant.
- 23) Keeping the plate/tube(s) on the magnet, add 200 μ L of 80% ethanol.
- 24) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 25) Carefully remove and discard the ethanol.
- 26) Keeping the plate/tube(s) on the magnet, add 200 μL of 80% ethanol.
- 27) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 28) Carefully remove and discard the ethanol. Try to remove all residual ethanol without disturbing the beads.
- 29) Dry the beads at room temperature for 3-5 min, or until all of the ethanol has evaporated. Do not over-dry.
- 30) Remove the plate/tube(s) from the magnet.
- 31) Thoroughly resuspend the beads in 25 μL of elution buffer or 10 mM Tris-HCl, pH 8.0 or H2O
- 32) Incubate the plate/tube(s) at room temperature for 5 min to elute DNA off the beads.
- 33) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.

- 34) Transfer 23.5 μ L of the clear supernatant to a new plate/tube(s) for the 2nd bead clean up
- 35) Proceed to cycle determination and library amplification or store the samples at -20C

XIV. Cycle Determination for Library Amplification

- 1) Dilute each library to 1:10, 1:100, and 1:1000 in water or dilution buffer
- 2) Make enough qPCR master mix for each sample at 3 different concentrations in triplicate and 6 standards in triplicate (#samples x 3 x 3 + 6 standards x 3):

KAPA qPCR Mix						
Reagent	Volume (µL)					
KAPA Sybr Fast Mix (2X)	5					
KAPA Library Amplification Primer Mix (10X)	1					
H2O	2					
diluted Adapter-ligated library	2					
TOTAL	10					

- 3) Place 8 μ L of master mix into each well of a 384 well qPCR plate
- 4) Add in 2 µL of standard or diluted sample in each well
- 5) Cover the top securely with clear film
- 6) Spin down in a centrifuge
- 7) Run on the Roche Lightcycler 480 with the following program

Program Name	Cycles	Analysis Mode	Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisition (per °C)	Sec Target (°C)	Step Size (°C)	Step Delay (cycles)
Pre-Incubation	1	None	95	None	00:05:00	4.8		0	0	0
Amplification	35	Quantification	95	None	00:00:30	4.8		0	0	0
			60	Single	00:00:45	2.5		0	0	0
Melting Curve	1	Melting Curves	95	None	00:00:05	4.8				
			65	None	00:01:00	2.5				
			95	Continuous		0.11	5			
Cooling	1	None	40	None	00:00:30	2.5		0	0	0

8) Use Ct values to calculate optimal number of cycles

XV. CleanStart library amplification

1) Assemble each library amplification reaction as follows:

PCR Mix						
Reagent	Volume (µL)					
CleanStart PCR Mix 2X	25					
CleanStart PCR Primer Mix	1.5					
Adapter-ligated library	23.5					
TOTAL	50					

- 2) Mix thoroughly and centrifuge briefly.
- 3) Amplify using the following cycling protocol:

Thermocycler Conditions						
Stage 1	37	15:00				
	98	02:00				
	98	00:20	Calculated			
Stage 2	60	00:30	# of			
	72	00:30	cycles			
Stage 3	72	01:00				
	4	8				

4) Clean up PCR samples using QIAseq beads

XVI. Post-amplification Cleanup

- 1) Add 5 μL H2O to each of your samples for a total vol of 55 μL
- 2) In the same plate/tube(s), perform a 1.1X bead based cleanup by adding 60 μ L QIAseq beads to your 55 μ L PCR reaction (total vol = 115 μ L)
- 3) Mix thoroughly by vortexing and/or pipetting up and down multiple times.
- 4) Incubate the plate/tube(s) at room temperature for 5 min to bind DNA to the beads.
- 5) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 6) Carefully remove and discard the supernatant.
- 7) Keeping the plate/tube(s) on the magnet, add 200 μ L of 80% ethanol.
- 8) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 9) Carefully remove and discard the ethanol.
- 10) Keeping the plate/tube(s) on the magnet, add 200 μL of 80% ethanol.
- 11) Incubate the plate/tube(s) on the magnet at room temperature for \geq 30 sec.
- 12) Carefully remove and discard the ethanol. Try to remove all residual ethanol without disturbing the beads.
- 13) Dry the beads at room temperature for 3-5 min, or until all of the ethanol has evaporated. Do not over-dry.
- 14) Remove the plate/tube(s) from the magnet.
- 15) Thoroughly resuspend the beads in 25 μ L of elution buffer or 10 mM Tris-HCl, pH 8.0 or H2O
- 16) Incubate the plate/tube(s) at room temperature for 5 min to elute DNA off the beads.
- 17) Place the plate/tube(s) on a magnet to capture the beads. Incubate until the liquid is clear.
- 18) Transfer 24 μl of the clear supernatant to a new plate/tube(s)
- 19) Store libraries at -20C

XVII. Library Quantification: Qubit (dsDNA HS)

- 1) Mix enough components A and B (1:200) together for all your samples and 2 standards
- 2) For standards, add 190 μL mix with 10 μL of standard in a Qubit tube
- 3) For samples, add 199 μL mix with 1 μL sample in a Qubit tube
- 4) Vortex to mix and incubate in the dark at room temp for 2min
- 5) Quantify using Qubit machine

XVIII. Average Size Determination: Fragment Analyzer

- 1) From the 5200 Fragment Analyzer DNF-474 High Sensitivity NGS 1-6000bp kit, mix gel and intercalating dye together (1 μL dye to 10 mL gel)
- 2) Pipette 22 µL diluent marker to the wells of the 96 well plate that will contain samples or ladder
 - a. FA runs row by row
 - b. The 12^{th} well always contains the ladder
 - c. Do not go over 5ng of sample
- 3) Add in 2 μL of sample or ladder
- 4) Add Blank Solution to the unused wells
- 5) Cover the row securely with a strip of clear film
- 6) Spin down in a centrifuge
- 7) Take gel and sample plate and run on FA

XIX. Library Quantification: qPCR

- 1) Dilute each library to 1:1000, 1:10,000, and 1:100,000 in water or dilution buffer
- 2) Make enough qPCR master mix for each sample at 3 different concentrations in triplicate and 6 standards in triplicate (#samples x 3 x 3 + 6 standards x 3):

KAPA qPCR Mix						
Reagent	Volume (µL)					
KAPA Sybr Fast Mix (2X)	5					
KAPA Library Amplification Primer Mix (10X)	1					
H2O	2					
diluted Adapter-ligated library	2					
TOTAL	10					

- 3) Place 8 μL of master mix into each well of a 384 well qPCR plate
- 4) Add in 2 μL of standard or diluted sample in each well
- 5) Cover the top securely with clear film
- 6) Spin down in a centrifuge

7) Run on the Roche Lightcycler 480 with the following program

Program Name	Cycles	Analysis Mode	Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisition (per °C)	Sec Target (°C)	Step Size (°C)	Step Delay (cycles)
Pre-Incubation	1	None	95	None	00:05:00	4.8		0	0	0
Amplification	35	Quantification	95	None	00:00:30	4.8		0	0	0
			60	Single	00:00:45	2.5		0	0	0
Melting Curve	1	Melting Curves	95	None	00:00:05	4.8				
			65	None	00:01:00	2.5				
			95	Continuous		0.11	5			
Cooling	1	None	40	None	00:00:30	2.5		0	0	0

- 8) Use Ct values to determine sample concentration
- 9) Pool together samples that need to be sequenced
- 10) Qubit (optional) and qPCR to quantify the pooled library